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."In many warehousing systems cases of items have to be retrieved manually from both

sides of a wide aisle and deposited on a vehicle which travels on the center line of the aisle.

The picker will stop the vehicle, pick and load cases of items onto the vehicle and then drive to

the next stop. There is a tradeoff between the time to stop and start the vehicle and the

increased walking distance if fewer vehicle stops are made.

An algorithm is presented to optimally determine the number and location of stops and

to specify the items to be picked at each stop. Comparison with heuristic clustering methods

indicates savings of 10 % to 90 %. The algorithm can be implemented in real time on a

microcomputer.

KEYWORDS: order picking, set covering, material handling.

JrNTIS R&

DTIC TA E33" + / I .<,.. . d'.

"oC

By

- I%
S Ad

Dist ,

~ N 2C:d: 
-;*.¢.,.. , '.' "%,+...£ + ,. -J, • ,'.'.", 

'... ".'. '-'. .'.,-''.''-,-" 
. .. "- . _ "l" "..".. o • •-.,... • ,., .". . ,,." o '--,. ".e .. J.' .". " ., " ,,,, .. '.. 5 .'..1

+-., ,-_._ ,r %.,t, + S -- . .. -% -% -%- "• " ' '' . -"""- '* ' ' •. . ." '. ., •.. .. . .'...,. .+_. _ .._._._P_'_ _I ,P .. '. -. .-' .PP- - .. 

1-



. INTRODUION

One of the most common order picking systems is case picking, where products are

stored on pallets on both sides of a wide aisle. The aisles are usually 12 or more feet wide to

allow the pallets to be stored by fork lift truck. Frequently, the picking vehicle is a tug pulling
two pallets on dollies or a pallet jack with a capacity of two pallets. Such vehicles cannot make

sharp turns, hence the picking is done by driving down the center of the aisle with periodic

' , stops for picking. The vehicle is stopped on the center line of the aisle. All the cases to be

picked at the stop are manually retrieved one-at-a-time and placed on the vehicle. The vehicle

is then driven to its next stop. Prominent examples of such systems occur in grocery

distribution and parts distribution systems. For other order picking systems in wide aisles, see

Goetschalckx and Ratliff (1985).

The objective is to maximize order throughput or equivalently minimizing the overall

picking time. The overall picking time consists of (a) the walking time of the driver, (b) the
,o .

time to start and stop the vehicle one or more times, (c) the vehicle driving time (d) the time

to pick the items, and (e)the time to stack the items on the vehicle. It will be assumed here

that (c), (d) and (e) are independent of the number of stops and their location. The problem

is then to determine how many stops should be made, where the vehicle should be stopped and

',. which picks should be associated with each stop, in order to minimize the sum of (a) the time > .

spent walking between vehicle and the pick and (b) the time spent starting and stopping the

vehicle. An illustration of the picking problem is given in Fig 1.
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Figure 1. Wide Aisle Picking Illustration.

In section 28a procedure is developed to determine for each order the optimal -5

stops and associated picks at each stop. In Section 3, two procedures are developed to

determine the stops if the same stops are to be used for all orders. All three procedures

are implemented on a microcomputer. They are compared experimentally in Section 4 with

respect to computation time and travel time.
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AN

ti.. 2. OP71MAL LOCA7ION OF VEHICLE STOPS

it is assumed that the vehicle travels on the center line of the aisle and is stopped on

the center line. Two different assumptions are considered with respect to travel between the

picking vehicle and the pick. First, it is assumed that the picker travels in straight line from

the vehicle to the item on the pallet and back. This straight line travel is also called Euclidean

travel. Next, it is assumed that the picker travels first to the side of the aisle and then along * .

the side of the aisle. This travel pattern is also called rectilinear travel. The actual travel is a

combination of both and is more like rectilinear for travel from the vehicle to the first pick at

a stop and more like Euclidean for the remaining picks at a stop. An illustration of Euclidean

(dashed line) and rectilinear (solid line) travel to a pick is shown in Figure 2. It will be shown .

that optimal stops do not depend significantly on which of the two travel assumptions is

selected.
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stopandstar th veicle Lt itis te icreenta tie reuird fr eah vhice stp. et4



be the number of items in the order. Let v be the walking speed of the picker between the

vehicle and the picks.

p.

The following properties allow an efficient optimum procedure to be established for

determining the stops, assuming either Euclidean or rectilinear travel between the vehicle and

the pick.

, ~Property 1. 
-'-_

Given a set of vehicle stops, any optimal procedure will always pick each item from its closest

vehicle stop.

fof The proof is by contradiction. Assume an item is not assigned to its closest stop by an

optimal procedure. Assigning the item to its closest vehicle stop would decrease the retrieval

time for that item and not increase any other travel times. Hence, the current assignment

cannot be optimal. Q.ED.

. ' Property 7

All the items, picked from a single vehicle stop by an optimal algorithm, are located

consecutively along both sides of the aisle, without interruption by items picked from different

4 vehicle stops.

Erof The proof follows immediately from Property 1.

Hence, an optimal algorithm must have consecutive blocks of items associated with each

stop. The total time associated with a single vehicle stop, denoted by cj, is the total round trip

itravel time from all the picks associated with this stop to the optimal vehicle location plus the

fed vehicle start/stop time. Let e denote the set of picks assigned to stop j, then

cj - f + 2 Fdjj/v.
"P.
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Property ..
'_

Given the items to be picked from a sothe otmmlocation of the vehicle stop asumin

S.. ,m

Ediea travel distance is given by the following recursive formula. .€,

Zj E 1/dj

where £Pj Em

djj - (aj-zj) )+(w/2)2..-.

Proof This is the equivalent of a single facility Eucen location problem, Francis and

C'", White(1974), Chapter 4. Q.E.D.

Observe that all dii are always positive, since the vehicle is located on the center line

and the items are located at the sides of the aisle. Hence, the recursive formula doesn't have

to incorporate protections against singularities. A possible starting point for the vehicle stop

location is the optimal solution to the one-dimensional rectilinear location problem with respect .

to the items in the pick set Pi.

Proerty 4. '':-

Given the item to be picked from a stop, the optimal location of the vehicle stop assuming

rectilinear travel distance is determined as follows. If the number of items in the set Pi is odd,
J

then the location of the middle item is the optimal location. If the number of items in Pj is

even, any location between the two middle items is an alternative optimal location.

f This is equivalent to a single facility rectilinear location problem. Francis and % "

hQite (1974), Chapter 4. O.E.D.

If the number of items in Pj is even, then the algorithm selects the midpoint between

K,,h,
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the two middle items. ".

From Property 2, the order picking problem exlubits a block structure, Le. the picks for

a single stop are assigned consecutively. This reduces the number of possible combinations of

item assignments to vehicle stops from N2N to N(N+I)2. This makes it possible to formulate

the problem as a set covering problem (SCP) with the special "consecutive-ones" structure. For

eilemore information see Segal (1974) and Bartholdi and Ratliff (1978). The model for theJI
example of Figure 3 is given in Figure 4. Each column in the problem corresponds to a ]

possible consecutive set of picking points assigned to a vehicle stop. The columns exhibit the . .

"consecutive-ones" property, (i.e. the non-zero elements in each column form an uninterrupted

r block). If xk - I then the stop corresponding to column k is selected. If xk = 0 then the stop

I ,,corresponding to column k is not chosen.

Ste st a 2'

2

Figure 3. Wide Aisle Picking Example.• -,1. 
.'- .'-
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Maximize E ckxk

k-1

col 1 23 4 567 8 910 RHS
row [ i

2,,11 1 1 1 1 1 x > 1 -Pl 4 [ 1 1 1 > 1

xk - 0 or 1.

Figure 4. SCP Constraint Matrix for the Example in Figure 3.

Because of the consecutive-ones property, this set covering problem can be solved

efficiently by finding the shortest path in the following acyclic graph. The items are assumed to -

be sorted by increasing coordinates. There exist a node in the graph for each item to be W

S-'." picked plus a source node (equivalent to item zero). There exists an arc in the graph

corresponding to each block of consecutive picks with as length ck. If the first item to picked

in the block is m and the last item is n, then the arc goes from node m-I to node n. The

shortest path from source node zero to node N gives the optimal stops and pick assignments.

The graph for the example of Figure 3 is shown in Figure5. 5.

ja * .
,.,,

VV

L Figure 5. Graph for the Example in Figure 3.

-. .... The same algorithm can be implcren red using either the rectilinear travel assumption

..A 0
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for the picker or the Euclidean travel assumption. The only difference is in determining the

cost associated with each column in the SCP. This is determined by solving the appropriate

ji.).location problem (either Euclidean or rectilinear).

This algorithm was implemented directly by dynamic programming. The number of cost

computations is O(N 2). If the number of iterations of the recursive formula is limited by a

constant, then each cost computation requires O(N) steps. Hence, the total algorithm for the

Euclidean travel assumption is O(N 3). The total algorithm for the rectilinear travel assumption

is O(N2).

The number and location of the vehicle stops based on the Euclidean and the

Rectilinear travel assumptions were compared. The number of stops was the same in 95 % of

the cases and never differed by more than one stop. The picking times were compared in the

following way. Under the rectilinear distance travel assumption the stops were determined e A

based on rectilinear distar, ,'t the picking time was computed using Euclidean distance. The

two algorithms are denoted b., EUCLID" and "RECTILIN. The number of items in the aisle

was set equal to 5, 10, 20 and 40. A complete description of the experimental comparison is

given in Section 4. The average run time on an IBM AT microcomputer was 4.21 seconds for

the EUCLID algorithm and 1.72 for the RECTILIN algorithm. The start/stop time of the

vehicle didn't have a significant effect on the run times. The complete run time comparisons

.are shown in Table 1.

TABLE 1 Averaae Run Time (s)"

# picks 5 10 20 40

EUCLID 0.04 0.30 2.00 14.48
RECTILIN 0.03 0.15 0.84 5.87

L Note that the RECrN algorithm ha the stops determined based on rectilinear location but

S.the distances compared are all Euclidean.

.4.
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• ~~TABLE 2 Average Percentae Increase in Travel ime Usint Rectilinear Locxation rather '--
~~~than Euclidean Location '

.. # picks 5 10 20 40

- ,.05 .11 .18 .21%

TABThe small increase in travel time (ess than one fourth of a percent) indicates that

," ..- ,the actual travel assumption is not crucial. In other Words, the algorithm will determine

~near optimal stops for any picker travel pattern which falls between the rectilinear and the

" ". Euclidean travel path. An example of such path is shown with the dotted line in Figure 6,

" where the Euclidean path is indicated with the dashed line and the rectilinear path with the

" solid line.

p Figure 6. Various Travel Paths.

"4 The computer run times for the RECI'ILIN algorithm are smaller than for the

" $'2EUCLID algorithm. Hence the RECTILIN algorithm is more suitable for actual

:....implementation in the warehouse.
1.
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3. FIXED LOCATION FOR VEHICLE STOPS

In industry, the stops are frequently not recomputed for each order, but are fixed in
06

* advanced. In other words, the vehicle is stopped in the middle of fixed block of slots if there"%

-m are any picks in the block. The size of this block is called the "pattern length". The advantage

of such a procedure is its simplicity and constant behavior. On the other hand, this fixed policy

cannot be optimal for all orders. S.

"- It is possile to compute the optimal pattern length by continuous approximation for a

given "order size". The order size is the number of locations that have to be visited in picking

r* this order. Assume the aisle is divided into M equal blocks, each with a pattern length of x

locations. Each block corresponds to a vehicle stop. Let K denote the number of locations on

" one side of the aisle. Then

x - K/-.

Furthermore, assume that the picking points are equally spaced on either side of the

block. The optimal location of the vehicle stop is then in the middle of the block. Let L

denote the aisle length, let A denote the aisle width and let u denote the width along the aisle

. of one location. The following relationships then exist

L - K.u - M-x-u.

":, ~The average distance of an item location to the vehicle is then equal to (*.;" *', ..:.:.:;

d - (A/4)[r+J + (l/r)ln(r+ 1],.-.

with the dimensionless factor r equal to

.5 r - L/(MA).
.-:.:

The total time for picking the aisle is then

T - 2Nd/v + Mr.

4• S. T is a convex function of the pattern length x, as proved in Appendix A. The optimal

,% 11%
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s* equal to the first x which is an integer factor of K and for which the forward difference

of T becomes positive. Thb x* can best be found by enumerating over increasing integer

factors of K. The above procedure will be denoted by PATTERN and is compared with the _.

other procedures in Section 4.

A empirical fixed pattern length of 4 slots has been observed by the authors in several

. distribution centers. This pattern is called the "QUAD" picking pattern by its users. This

* QUAD picking pattern is compared with the optimal variable stop procedures and the optimal

. fixed stop procedure in Section 4.

.2

5. '
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is a measure of how dose their solution is to the optimal solution. The second characteristic is

wher efficncy. whch measure of how many cmuainlresources thyrequire. t

weecompared with the optimal fixed location procedure and with the empirical 4-slot fixed

location procedure. A full factorial design of experiments was used. The first factor is equal to

reduc the umberof widths

A was 12 feet the walking speed v was 240 feet per minute. The slot width u was set to 4

feet. which corresponds to 60 slots on one side of the aisle. The number of items was set

equal to 5, 10, 20 and 40. The stop/start time of the vehicle was set equal to 1 , 0.5, 0.25 and

of 2, 1. 5and26. enc, tereexist 16 cases for each of the four procedures and for each

cas te elcain ee u o total of 160 experiments per algorithm. The total number

~ -* of experiments was 640.

The procedures were implemented in Pascal (IBM Version 2.0 with all debugging

options disabled and floating point operations interrupts) on an IBM AT with 80287 Numerical

Processor. The times are for the computations of the stops only, exclude all input/output times

and are given in seconds.

The PATTERN and QUAD procedures required average run times less than 0.04

seconds.

;'e. ~The average increase in travel time for each of the procedures in this experiment overON

13
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the time required for stop determined using the EUCLID algorithm are summarized in Table 3.

The average number of stops using each procedure is summarized in Table 4.

TABLE 3 Averate Increase in Travel Time (%)

# picks 5 10 20 40 .-

RECTILIN .05 .11 .18 .21
PATTERN 35 19 13 9
QUAD 37 51 60 45

stop time 0.125 0.250 0.500 1.000

S RECTILIN .24 .15 .10 .06
PATTERN 25 22 13 15
QUAD 16 27 56 93

TABLE 4 Averaze Number of Stoxs

# picks 5 10 20 40

EUCLID 3 4 5 7
RECTILIN 3 4 5 7
PATTERN 2 3 6 7
QUAD 4 7 12 15

stop time 0.125 0.250 0.500 1.000

EUCLID 7 5 4 3
RECTILIN 7 5 4 3
PATTERN 7 6 4 3
QUAD 9 10 10 10

..

%,,
% '5.
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7. APENIX A

i In order to determine efficiently the optimal pattern length x it must be proven that the travel,,

-.

time T is a convex function of x. Using the notations of the paper and with the aisle width w %

expressed in locations equal to

w A/u

then

N w2

I,,) - -n- - 2w)

The second partial derivative of T(x) is equal to

21a 2 T(x) uNw [ 2Kf x
,n(x + jx+w)- ]nw +

ax2  x3  Nw2u x . ".

* The first factor is always positive for xel,K], hence in order to prove convexity it must be

shown that the second factor is always positive for xe[1,K]. Let the second factor be denoted --

.p by g(x), then

ag(x) x2  '""

.. - > 0.
a "x (x2+w2)]x2+w2

The first derivative for g(x) is strictly positive for x > 0. hence g(x) is a strictly increasing

function of x for x > 0. Also 5".

lim g(x) - 2Kf/uNw 2 > 0.
x>O, x> 0 .

*° S. %* S..

Since g(x) is positive for x = 0 and increasing, g (x) is positive for x[1,K]. Hence the second

derivative of T(x) is positive and T(x) is a convex function of x. ,

17)? '.-
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